VERB_code_2.3
|
Computational grid composed of 3 different GridElement. More...
#include <Grid.h>
Public Member Functions | |
void | Create_Grid (Parameters_structure::GridElement parameters_L, Parameters_structure::GridElement parameters_pc, Parameters_structure::GridElement parameters_alpha, Parameters_structure::GridElement parameters_epc, string grid_filename, string gridType, Grid SecondGrid=Grid()) |
void | Output (string filename) |
Public Attributes | |
string | type |
grid type | |
bool | Grid_initialized |
check for initialized status | |
Matrix3D< double > | Jacobian |
GridElement | L |
grid elements to be used | |
GridElement | pc |
grid elements to be used | |
GridElement | alpha |
grid elements to be used | |
GridElement | epc |
grid elements to be used | |
Computational grid composed of 3 different GridElement.
Combined from 3 grid elements: L, pc, Alpha and additional array of epc values for convenience.
void Grid::Create_Grid | ( | Parameters_structure::GridElement | parameters_L, |
Parameters_structure::GridElement | parameters_pc, | ||
Parameters_structure::GridElement | parameters_alpha, | ||
Parameters_structure::GridElement | parameters_epc, | ||
string | grid_filename, | ||
string | gridType, | ||
Grid | SecondGrid = Grid() |
||
) |
create a grid based on each grid element's parameters
parameters_L | - parameters of grid element L |
parameters_pc | - parameters of grid element pc |
parameters_alpha | - parameters of grid element alpha |
parameters_epc | - parameters of grid element epc |
grid_filename | - filename of grid |
gridType | - grid type |
SecondGrid | - grid parameter in case creating copy of this grid |
void Grid::Output | ( | string | filename | ) |
Matrix3D<double> Grid::Jacobian |
Jacobian of the diffusion equation. In 1d_universal_solver there is a parameter 'n' represented power of variable in the equation \( x^n \frac{\partial}{\partial x} x^{-n} D_{xx} \frac{\partial f}{\partial x} \). More general case is using Jacobian: \( Jacobian \frac{\partial}{\partial x} Jacobian^{-1} D_{xx} \frac{\partial f}{\partial x} \).